C. U. SHAH UNIVERSITY Winter Examination-2022

Subject Name: Mathematics - I

Subject Code: 4SC01MAT1		Branch: B.Sc. (All)	
Semester: 1	Date: 04/01/2023	Time: 11:00 To 02:00	Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Attempt the following questions: Q-1 (14)a) If $A = \begin{bmatrix} 2 & 2 \\ 13 & 20 \end{bmatrix}$ then $|A| = \frac{1}{(a)}$ (a) 11 (b) 12 (c) 13 (d) 14 **b**) If $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 3 \\ 5 & 6 & 0 \end{bmatrix}$ then cofactor of '4' is _____. (c)7 (d) 8 (a) 5 (b) 6 c) The Cartesian Co – ordinates of polar coordinates $\left(1, \frac{\pi}{2}\right)$ is _____. (d) None $(c)(1,\sqrt{3})$ (b) (1,0) (a) (0,1) d) If $y = x^7$ then $y_7 =$ ____. (a) 5! (b) 6! (c) 7! (d) 8! e) Which of the following is indeterminate forms? (a) 0^0 (b) $0 \cdot \infty$ (c) ∞^∞ (d) All f) $\lim_{x \to 0} \frac{\tan x}{x}$ is of the form_____ (a) $\frac{\infty}{\infty}$ (b) $\infty - \infty$ (c) $\frac{0}{0}$ $(d)0^0$ g) Which of the following is clairaut's equation? (b) $y = px + \frac{a}{n}$ (a) $y = 2p^2x + x^3$ (c) $yp^2 = px + x^3p^3$ (d) All **h**) Polar co-ordinates of (3,4) are ____ (a) $\left(5, \frac{\pi}{2}\right)$ (b) $\left(3, \frac{\pi}{4}\right)$ (c) $\left(5, \tan^{-1}\frac{5}{3}\right)$ (d) $\left(5, \tan^{-1}\frac{4}{3}\right)$ i) The necessary and sufficient condition for the differential equation to be exact is (a) $\frac{\partial M}{\partial v} = \frac{\partial N}{\partial x}$ (b) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial v}$ (c) $\frac{\partial M}{\partial v} = -\frac{\partial N}{\partial x}$ (d) None

j) Integrating factor for the linear differential equation $\frac{dx}{dy} + Px = Q$,

where P and Q are a function of y or may constant is (a) $e^{\int P dy}$ (b) $e^{\int P dx}$ (c) $e^{-\int P dy}$ (d) $e^{-\int P dx}$

- **k**) Write expansion of e^x in terms of *x*.
- **I**) Find order and degree of given equation:

$$\left[1 + \left(\frac{d^3y}{dx^3}\right)^2\right]^3 = \left(\frac{d^2y}{dx^2}\right)^4$$

- m) Define: Symmetric Matrix
- n) Solve: $(D^2 3D 4)y = 0$

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
	Α	If A = $\begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 1 \\ 5 & 4 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} 3 & 1 & 0 \\ 7 & 0 & 5 \\ 2 & 5 & 1 \end{bmatrix}$ and C = $\begin{bmatrix} 3 & 0 & 5 \\ 6 & 9 & -1 \\ 7 & 8 & -2 \end{bmatrix}$ then find a matrix X such that $4A + 3B - 5C = X$	05
	В	If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ then find 5 <i>AB</i> and 4 <i>BA</i> .	05
	С	Express the following terms with example (i). Symmetric Matrix (ii). Upper Triangular Matrix	04
Q-3		Attempt all questions	(14)
	A	Find the Inverse of the matrix $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$.	06
	В	Find the characteristic equation of matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$	04
	С	Find n^{th} derivatives of $\cos x \cos 2x \cos 3x$.	04
Q-4		Attempt all questions	(14)
	Α	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.	05
	В	Solve given system of equation by using Gauss Elimination method. x + y + z = 6, x - y + z = 2, 2x + y - z = 1.	
	С	Expand $e^x \sin x$ in power of x by Maclurin's series.	04
Q-5	A	Attempt all questions Solve : $(x^2 - y^2)dx + 2xy dy = 0$.	(14) 05
	В	Solve: $\frac{dy}{dx} = \cos x \cos y - \sin x \sin y.$	05

	С	Solve the differential equation: $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$.	04
Q-6	A B	Attempt all questions State and prove Leibnitz's theorem. Obtain spherical and cylindrical co-ordinates of the point whose Cartesian co-ordinates are $(-\sqrt{3}, -1, 2\sqrt{3})$.	(14) 07 07
Q-7		Attempt all questions	(14)
	Α	Evaluate: $\lim_{x \to 0} \frac{x - \sin x \cos x}{x^3}$.	05
	В	Solve: $x^{2}(y - px) = yp^{2}$.	05
	С	Solve: $p(p + y) = x(x + y)$.	04
Q-8	A	Attempt all questions Expand $f(x) = x^4 - 11x^3 + 43x^2 - 60x + 14$ in power of $(x - 3)$.	(14) 05
	B	Solve $\frac{dy}{dx} + y \ cotx = 4x \ cosecx$ where $y\left(\frac{\pi}{2}\right) = 0$.	06
	С	Write down relation between Polar and Cartesian co-ordinate and relation between Cartesian and spherical co-ordinate.	03

