\qquad

C. U. SHAH UNIVERSITY

Winter Examination-2022

Subject Name: Mathematics - I

Subject Code: 4SC01MAT1

Branch: B.Sc. (All)

Semester: 1
Date: 04/01/2023
Time: 11:00 To 02:00
Marks: 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
a) If $A=\left[\begin{array}{cc}2 & 2 \\ 13 & 20\end{array}\right]$ then $|A|=$ \qquad
(a) 11
(b) 12
(c) 13
(d) 14
b) If $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 1 & 3 \\ 5 & 6 & 0\end{array}\right]$ then cofactor of ' 4 ' is \qquad .
(a) 5
(b) 6
(c) 7
(d) 8
c) The Cartesian Co - ordinates of polar coordinates $\left(1, \frac{\pi}{2}\right)$ is \qquad .
(a) $(0,1)$
(b) $(1,0)$
(c) $(1, \sqrt{3})$
(d) None
d) If $y=x^{7}$ then $y_{7}=$ \qquad .
(a) 5 !
(b) 6 !
(c) 7 !
(d) 8 !
e) Which of the following is indeterminate forms?
(a) 0^{0}
(b) $0 \cdot \infty$
(c) ∞^{∞}
(d) All
f) $\lim _{x \rightarrow 0} \frac{\tan x}{x}$ is of the form \qquad
(a) $\frac{\infty}{\infty}$
(b) $\infty-\infty$
(c) $\frac{0}{0}$
(d) 0^{0}
g) Which of the following is clairaut's equation?
(a) $y=2 p^{2} x+x^{3}$
(b) $y=p x+\frac{a}{p}$
(c) $y p^{2}=p x+x^{3} p^{3}$
(d) All
h) Polar co-ordinates of $(3,4)$ are \qquad .
(a) $\left(5, \frac{\pi}{2}\right)$
(b) $\left(3, \frac{\pi}{4}\right)$
(c) $\left(5, \tan ^{-1} \frac{5}{3}\right)$
(d) $\left(5, \tan ^{-1} \frac{4}{3}\right)$
i) The necessary and sufficient condition for the differential equation to be exact is
(a) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(b) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
(c) $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
(d) None
j) Integrating factor for the linear differential equation $\frac{d x}{d y}+P x=Q$, where P and Q are a function of y or may constant is
(a) $e^{\int P d y}$
(b) $\mathrm{e}^{\int \mathrm{Pdx}}$
(c) $\mathrm{e}^{-\int \mathrm{Pdy}}$
(d) $e^{-\int P d x}$
k) Write expansion of e^{x} in terms of x.
l) Find order and degree of given equation:

$$
\left[1+\left(\frac{d^{3} y}{d x^{3}}\right)^{2}\right]^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{4}
$$

m) Define: Symmetric Matrix
n) Solve: $\left(D^{2}-3 D-4\right) y=0$

Attempt any four questions from Q-2 to Q-8

Q-2
Attempt all questions
A If $A=\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 2 & 1 \\ 5 & 4 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 1 & 0 \\ 7 & 0 & 5 \\ 2 & 5 & 1\end{array}\right]$ and $C=\left[\begin{array}{ccc}3 & 0 & 5 \\ 6 & 9 & -1 \\ 7 & 8 & -2\end{array}\right]$ then find a 05 matrix X such that $4 A+3 B-5 C=X$

B If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ then find $5 A B$ and $4 B A$.
C Express the following terms with example
(i). Symmetric Matrix
(ii). Upper Triangular Matrix

Q-3 Attempt all questions
A Find the Inverse of the matrix $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$.
B Find the characteristic equation of matrix $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{array}\right]$
C Find $n^{\text {th }}$ derivatives of $\cos x \cos 2 x \cos 3 x$.

Q-4 Attempt all questions

A Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.
B Solve given system of equation by using Gauss Elimination method.

$$
x+y+z=6, x-y+z=2,2 x+y-z=1
$$

C Expand $e^{x} \sin x$ in power of x by Maclurin's series.

Q-5 Attempt all questions

A Solve : $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$.
B Solve: $\frac{d y}{d x}=\cos x \cos y-\sin x \sin y$.

C Solve the differential equation: $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$.
Q-6 Attempt all questions
A State and prove Leibnitz's theorem.
B Obtain spherical and cylindrical co-ordinates of the point whose 07 Cartesian co-ordinates are $(-\sqrt{3},-1,2 \sqrt{3})$.

Q-7 Attempt all questions
A Evaluate: $\lim _{x \rightarrow 0} \frac{x-\sin x \cos x}{x^{3}}$. 05
B Solve: $x^{2}(y-p x)=y p^{2} . \quad 05$
C \quad Solve: $\mathrm{p}(\mathrm{p}+\mathrm{y})=\mathrm{x}(\mathrm{x}+\mathrm{y})$. 04

Q-8 Attempt all questions
A Expand $f(x)=x^{4}-11 x^{3}+43 x^{2}-60 x+14$ in power of $(x-3)$.
B Solve $\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x$ where $y\left(\frac{\pi}{2}\right)=0$. 06
C Write down relation between Polar and Cartesian co-ordinate and 03 relation between Cartesian and spherical co-ordinate.

